Refine Your Search

Topic

Search Results

Standard

Airborne Chemicals in Aircraft Cabins

2011-01-06
HISTORICAL
AIR4766/2
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: Airborne contaminant gases, vapors, and aerosols. Identified potential sources. Comfort, health and safety issues. Airborne chemical measurement. Regulations and standards. Operating conditions and equipment that may cause aircraft cabin contamination by airborne chemicals (including Failure Conditions and normal Commercial Practices). Airborne chemical control systems. It does not deal with airflow requirements.
Standard

AIRCRAFT HUMIDIFICATION

2010-05-03
HISTORICAL
AIR1609
This report covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Environmental Control Systems Life Cycle Cost

2010-01-20
HISTORICAL
AIR1812A
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
Standard

NBC Protection Considerations for ECS Design

2008-08-19
HISTORICAL
AIR4362
This SAE Aerospace Information Report (AIR) provides Nuclear, Biological and Chemical (NBC) protection considerations for environmental control system (ECS) design. It is intended to familiarize the ECS designer with the subject in order to know what information will be required to do an ECS design where NBC protection is a requirement. This is not intended to be a thorough discussion of NBC protection. Such a document would be large and would be classified. Topics of NBC protection that are more pertinent to the ECS designer are discussed in more detail. Those of peripheral interest, but of which the ECS designer should be aware are briefly discussed. Only radiological aspects of nuclear blast are discussed. The term CBR (Chemical, Biological, and Radiological) has been used to contrast with NBC to indicate that only the radiological aspects of a nuclear blast are being discussed.
Standard

Heat and Mass Transfer and Air-Water Mixtures

2007-12-03
HISTORICAL
AIR1168/2
Heat transfer is the transport of thermal energy from one point to another. Heat is transferred only under the influence of a temperature gradient or temperature difference. The direction of heat transfer is always from the point at the higher temperature to the point at the lower temperature, in accordance with the second law of thermodynamics. The fundamental modes of heat transfer are conduction, convection, and radiation. Conduction is the net transfer of energy within a fluid or solid occurring by the collisions of molecules, atoms, or electrons. Convection is the transfer of energy resulting from fluid motion. Convection involves the processes of conduction, fluid motion, and mass transfer. Radiation is the transfer of energy from one point to another in the absence of a transporting medium. In practical applications several modes of heat transfer occur simultaneously.
Standard

Environmental Control for Civil Supersonic Transport

2006-06-28
HISTORICAL
AIR746B
This document supplements ARP85, to extend its use in the design of ECS for supersonic transports. The ECS provides an environment controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include pressure, temperature, humidity, conditioned air velocity, ventilation rate, thermal radiation, wall temperature, audible noise, vibration, and composition (ozone, contaminants, etc.) of the environment. The ECS is comprised of equipment, controls, and indicators that supply and distribute conditioned air to the occupied compartments. This system is defined within the ATA 100 specification, Chapter 21. It interfaces with the pneumatic system (Chapter 36 of ATA 100), at the inlet of the air conditioning system shutoff valves.
Standard

Aircraft Cabin Pressurization Control Criteria

2006-06-28
HISTORICAL
ARP1270A
These recommendations cover the basic criteria for the design of aircraft cabin pressurization control systems as follows: (1) To ensure aircraft safety. (2) Physiology and limits which govern maximum permissible pressure time relations as related to aircraft passenger comfort. (3) General pressurization control system performance requirements designed to satisfy (2). (4) Technical considerations relevant to satisfying (3).
Standard

Aerothermodynamic Test Instrumentation and Measurement

2006-03-27
HISTORICAL
AIR1168/5
Like the technologies to which it contributes, the science of instrumentation seems to be expanding to unlimited proportions. In considering instrumentation techniques, primary emphasis was given in this section to the fundamentals of pressure, temperature, and flow measurement. Accent was placed on common measurement methods, such as manometers, thermocouples, and head meters, rather than on difficult and specialized techniques. Icing, humidity, velocity, and other special measurements were touched on briefly. Many of the references cited were survey articles or texts containing excellent bibliographies to assist a more detailed study where required.
Standard

Aircraft Electrical Heating Systems

2006-03-24
HISTORICAL
AIR860A
It is intended that the scope of this information report be limited to electrical heating of passenger, crew, and cargo compartments only. No attempt has been made to develop the complete electrical circuitry associated with the electrical heating components; however, the electrical circuitry required for heating component operation, safety, and monitoring will be included as available. Specific design information is given for various modern aircraft utilizing electrical heating. Each aircraft discussed will be identified by alphabetical letter designation and included in the appropriate appendix.
Standard

Aircraft Fuel Weight Penalty Due to Air Conditioning

2004-06-23
HISTORICAL
AIR1168/8
The purpose of this section is to provide methods and a set of convenient working charts to estimate penalty values in terms of take-off fuel weight for any given airplane mission. The curves are for a range of specific fuel consumption (SFC) and lift/drag ratio (L/D) compatible with the jet engines and supersonic aircraft currently being developed. A typical example showing use of the charts for an air conditioning system is given. Evaluation of the penalty imposed on aircraft performance characteristics by the installation of an air conditioning system is important for two reasons: 1 It provides a common denominator for comparing systems in the preliminary design stage, thus aiding in the choice of system to be used. 2 It aids in pinpointing portions of existing systems where design improvements can be most readily achieved.
Standard

Characteristics of Equipment Components, Equipment Cooling System Design, and Temperature Control System Design

2004-06-22
HISTORICAL
AIR1168/6
This section relates the engineering fundamentals and thermophysical property material of the previous sections to the airborne equipment for which thermodynamic considerations apply. For each generic classification of equipment, information is presented for the types of equipment included in these categories, and the thermodynamic design considerations with respect to performance, sizing, and selection of this equipment.
Standard

The Advanced Environmental Control System (AECS) Computer Program for Steady State Analysis and Preliminary System Sizing

2003-10-31
HISTORICAL
AIR1706B
Many different computer programs have been developed to determine performance capabilities of aircraft environmental control systems, and to calculate size and weight tradeoffs during preliminary design. Many of these computer programs are limited in scope to a particular arrangement of components for a specific application. General techniques, providing flexibility to handle varied types of ECS configurations and different requirements (i.e., during conceptual or preliminary design, development, testing, production, and operation) are designated “company proprietary” and are not available for industry-wide use. This document describes capabilities, limitations, and potentials of a particular computer program which provides a general ECS analysis capability, and is available for use in industry. This program, names AECS1, was developed under the sponsorship of the U.S. Air Force Flight Dynamics Laboratory (References 1 and 2).
Standard

Engineering Analysis System (EASY) Computer Program for Dynamic Analysis of Aircraft ECS

2003-10-31
HISTORICAL
AIR1823A
The Engineering Analysis SYstem (EASY) computer program is summarized in this report. It provides techniques for analysis of steady-state and dynamic (transient) environmental control system (ECS) performance, control system stability, and for synthesis of optimal ECS. General uses of a transient analysis computer program for ECS design and development, and general features of EASY relative to these uses, are presented. This report summarizes the nine analysis options of EASY, EASY program organization for analyzing ECS, data input to the program and resulting data output, and a discussion of EASY limitations. Appendices provide general definitions for dynamic analysis, and samples of input and output for EASY.
Standard

The Control of Excess Humidity in Avionics Cooling

2003-10-31
HISTORICAL
ARP987A
The purpose of this document is threefold: (1) to review the problem of moisture in avionics equipment, (2) to outline methods for correcting conditions of excess moisture in existing avionics installations, and (3) to recommend design practices for new avionics cooling system installations which will minimize the adverse effects of moisture.
Standard

TESTING OF COMMERCIAL AIRPLANE ENVIRONMENTAL CONTROL SYSTEMS

1997-10-01
HISTORICAL
ARP217C
These recommendations are written to cover the testing of environmental control equipment, functioning as a complete and installed system in civil aircraft for the purpose of: a Demonstrating the safety of the installation and equipment. b Demonstrating proper functioning of the installation and equipment. c Demonstrating performance of the installation and equipment. d Obtaining data for future design and to aid in the analysis of in-service performance of the system and equipment.
Standard

General Requirements for Application of Vapor Cycle Refrigeration Systems for Aircraft

1997-10-01
HISTORICAL
ARP731B
Recommendations of this ARP refer specifically to the application of closed cycle vapor cycle refrigeration systems as a source of cooling in an aircraft air conditioning system. General recommendations for an air conditioning system which may include a vapor cycle system as a cooling source are included in ARP85, Air Conditioning Equipment, General Requirements for Subsonic Airplanes, ARP292, Air Conditioning, Helicopters, General Requirements For, and AIR806, Air Conditioning Design Information for Cargo and High Density Passenger Transport Airplanes, and are not included herein. Vapor cycle refrigeration system design recommendations are presented in this ARP in the following general areas: a SYSTEM Design Recommendations: (See Section 3) b COMPONENT Design Recommendations: (See Section 4) c Desirable Design Features: (See Section 5)
Standard

FAULT ISOLATION IN ENVIRONMENTAL CONTROL SYSTEMS OF COMMERCIAL TRANSPORTS

1993-06-01
HISTORICAL
AIR1266
This AIR outlines concepts for the design and use of fault isolation equipment that have general application. However, the specific concern applies only to use with Environmental Control Systems in commercial transports. In particular, automatic Built In Test Equipment (BITE) with manual initiation and software programs are covered as systems already in use.
X